

Mapeamento de pluma de contaminação no aterro sanitário de Coronel Vivida-PR

Rodoilton Stevanato¹, Francisco José Fonseca Ferreira¹, Ricardo Wosniak¹, Maria Tereza Saad Simioni² ¹ Laboratório de Pesquisas em Geofísica Aplicada – LPGA/UFPR, ² Prefeitura Municipal de Coronel Vivida-PR

Copyright 2004, SBGf - Sociedade Brasileira de Geofísica

Este texto foi preparado para a apresentação no I Simpósio Regional da Sociedade Brasileira de Geofísica, São Paulo, 26-28 de setembro de 2004. Seu conteúdo foi revisado pela Comissão Tecno-científica do I SR-SBGf mas não necessariamente representa a opinião da SBGf ou de seus associados. E proibida a reprodução total ou parcial deste material para propósitos comerciais sem prévia autorização da SBGf.

Abstract

This paper reports the delineation of a contamination plume from an induced polarization, 2-D electrical imaging and vertical eletrical souding at the garbage depot of Coronel Vivida, a city in the State of Paraná, southern Brazil. Apparent resistivity (ρ_a) and apparent chargeability (M_a) data were collected along five profiling lines (a total of 845m profiled). The dipole-dipole array was used of 10m between current an potential electrodes, respectively. Depths models obtained from inversion of ρ_a and M_a clearly define a contamination plume of low ρ (< 75 Ω .m) and M (< 5 mV/V) values up to a depth of 20 meter. The non-contamined area, in turn, is delineated by high ρ (> 300 Ω .m and M (> 10 mV/V), which reflects both lateral and vertical contrasts in the physical properties studied.

Introdução

Recentemente os métodos elétricos têm sido bastante utilizados em aterros sanitários de resíduos sólidos domiciliares. Tais métodos são bastante eficientes, não invasivos e de baixo custo, e visam delinear em subsuperfície as plumas de contaminação, aproveitandose de suas propriedades químicas, as quais se refletem em incrementos de condutividade (e.g. Góis et al. 1997; Malagutti et al. 1997, Elis & Zuquette 2002, Stevanto et al. 2003). Neste sentido, o presente trabalho mostra os resultados obtidos através da aplicação de sondagens elétricas verticais, imageamento elétrico 2-D e polarização induzida (IP) no mapeamento de áreas contaminadas do aterro sanitário de Coronel Vivida-PR. A área do estudo situa-se no sul-sudoeste do estado do Paraná (Fig 1). O levantamento geofísico constou de cinco linhas de resistividade-IP, totalizando 845 metros de caminhamento, além de duas sondagens elétricas verticais (SEVs) de controle. A área situa-se sobre latossolos roxos, derivados do intemperismo de basaltos da Formação Serra Geral (Mesozóico da Bacia do Paraná).

Métodos

Os métodos geofísicos de resistividade e polarização induzida foram aplicados ao longo de cinco linhas: Linha 1 (250 m, Figs. 2 e 3), Linha 2 (240 m, Figs. 4 e 5), Linha 3 (95 m, Figs. 6 e 7), Linha 4 (130 m, Figs. 8 e 9), Linha 5 (130 m, Figs. 10 e 11), além de duas SEVs (vide localização na Fig. 13). Em todos os caminhamentos elétricos-*IP* foi utilizado o arranjo dipolo-dipolo, seis níveis

de investigação, espaçamento entre os eletrodos de corrente (AB) e de potencial (MN) de 10 m, à exceção da Linha 3, onde tal espaçamento foi de 5 m, enquanto nas SEVs foi empregado o arranjo Schlumberger, com AB/2 de 50 metros. Os equipamentos utilizados na pesquisa incluem um sistema completo de polarização induzida/resistividade, fabricado pela Íris Instruments, composto por um transmissor de alta potência (VIP3000W), alimentado por um gerador Honda EM5000S, e um receptor multicanal/espectral ELREC10. O processamento dos dados foi realizado através dos software Qasis Montaj TM e Zonge 2D Inversion for Interactive TM IP da Geosoft-Interpex.

Figura 1 – Mapa de localização do município de Coronel Vivida-PR.

Resultados e Discussões

As pseudoseções de resistividade e cargabilidade aparentes, assim como os modelos de profundidade correspondentes, são apresentados nas figuras de 2 a 11, enquanto a SEV-2 e seu modelo são indicados na Figura 12. A descrição, a seguir, dos resultados obtidos, é feita com base nos modelos de profundidade, em função de sua clareza:

Linhas 1 e 2 (Figs. 3 e 5) - estas linhas mostram nitidamente, em termos de resistividade e cargabilidade, a delimitação vertical (máximo de cinco metros) e lateral do depósito. Verifica-se, em ambos os modelos, a persistência de uma zona de alta resistividade (> 300 Ω .m) e cargabilidades superiores a 10 mV/V. em profundidade, a partir da base do depósito e no seu segmento nordeste, a qual foi interpretada como resposta do substrato geológico (basaltos). Nota-se ainda nos de resistividade. continuidade modelos а em subsuperfície de uma zona de baixa resistividade, sugerindo a percolação de fluidos condutivos através de fraturas. É também interessante observar que a magnitude da resistividade na Linha 2 (30 Ω .m) é menor do que na Linha 1 (50 Ω .m), indicando a direção do fluxo

de sudeste para noroeste, em conformidade com a topografia. A assinatura geofísica do meio natural (áreas brancas nos modelos de resistividade), no trato adjacente ao depósito (futuro aterro sanitário, Fig. 13), é caracterizada por altos valores de resistividade e cargabilidade. Entretanto, em torno da estação 160 m da Linha 2 (fig. 5), nota-se a continuidade de resistividades moderadas em profundidade, sugerindo a percolação de água em fraturas, pelo que foi planejada e executada uma sondagem elétrica vertical (SEV-2, Fig. 12), cujos resultados corroboram tal interpretação.

Figura 2 – Pseudoseções de resistividade e cargabilidade da Linha 1(vide localização na Fig. 13).

Figura 3 – Modelos de profundidade da resistividade e da cargabilidade da Linha 1 (vide localização na Fig. 13).

Figura 4 – Pseudoseções de resistividade e cargabilidade da Linha 2 (vide localização na Fig. 13).

Figura 5 – Modelos de profundidade da resistividade e da cargabilidade da Linha 2 (vide localização na Fig. 13).

Linha 3 (Fig. 7) – esta linha foi executada fora do depósito, espaçamento de 5 m entre os dipolos, com o objetivo de obter resultados detalhados até 10 metros de profundidade, visando constituir um perfil para monitoramento futuro. Desta forma, o meio natural é caracterizado por resistividades superiores a 300 Ω .m e cargabilidades maiores que 10 mV/V. No modelo de resistividade chama a atenção uma zona de condutiva, centrada na estação 5 m, sugerindo a percolação de água por fraturas, o que deve ser objeto de investigações diretas (poços de monitoramento).

Figura 6 – Pseudoseções de resistividade e cargabilidade da Linha 3 (vide localização na Fig. 13).

Figura 7 - Modelos de profundidade da resistividade e da cargabilidade da Linha 3 (vide localização na Fig. 13).

Linhas 4 e 5 – (figs. 9 e 11) – estas linhas, dispostas perpendicularmente as demais, definem com clareza os limites lateral e vertical do depósito, assim como a percolação de fluidos condutivos até profundidades da ordem de 5 metros. O substrato geológico (basaltos), é caracterizado por resistividades superiores a 300 Ω .m e cargabilidades maiores que 10 mV/V.

Figura – 8 Pseudoseções de resistividade e cargabilidade da Linha 4 (vide localização na Fig. 13).

Figura 9 – Modelos de profundidade da resistividade e da cargabilidade da Linha 4 (vide localização na Fig. 13).

Figura 10 – Pseudoseções de resistividade e cargabilidade da Linha 5 (vide localização na Fig. 13).

Figura 11 – Modelos de profundidade da resistividade e da cargabilidade da Linha 5 (vide localização na Fig. 13).

Figura 12 – Sondagem elétrica vertical (SEV-2) e sua interpretação geofísico-geológica (localização na Fig 13).

Conclusões

А aplicação dos métodos aeofísicos elétricos empregados neste trabalho revelou-se satisfatória, tanto na definição dos limites lateral e vertical do depósito, mapeamento da pluma de contaminação (chorume), quanto na caracterização de zonas de fratura no substrato geológico (basaltos), percoladas por fluidos condutivos. Uma síntese dos resultados obtidos é apresentada na Fig. 13, onde se nota os limites da zona contaminada, no contexto do atual aterro sanitário. Um dos aspectos mais interessantes da pesquisa foi a identificação de duas zonas fraturadas, delineadas geofisicamente e confirmadas através de trabalhos geológicos de campo. A primeira delas, segmentando o depósito, é percolada por chorume, indicando o sentido do fluxo, de sudeste para noroeste, prolongando-se até a Linha 3, em trato ainda não contaminado, portanto para selecionada implantação de pocos de monitoramento. A outra, posicionada na área do futuro aterro, direção aproximada E-W, permeada por águas subterrâneas não contaminadas, deve merecer especial atenção, considerando o avanço do preenchimento de resíduos sólidos em valas já abertas para tal finalidade.

Figura 13 – Mapa de interpretação geofísica, indicando os limites da área contaminada, a direção do fluxo e as zonas fraturadas.

Agradecimentos

Os autores agradecem à Prefeitura de Coronel Vivida-PR, o apoio recebido durante os trabalhos de campo.

Referências

Elis, V.R. & Zuquette, L.V. 2002. Caracterização geofísica de áreas utilizadas para disposição de resíduos sólidos urbanos. Rev. Bras. Geociências, 32(1):119-134. Góis, J.R., Pinheiro Jr. V., & Rigoti, A;. 1997.

Mapeamento geoelétrico do aterro sanitário da Lamenha Pequena. In: 5th International Congress of the brazilian Geophysical Society, São Paulo, Vol 2, p1216-1219.

Malagutti, W., Braga, A.C.O., Elis, V.R., Tandel, R.Y. & Porsani, J.L. 1997. Aplicação integrada de técnicas geofísicas no aterro sanitário de Rio Claro-SP – resultados preliminares. In: 5th International Congress of the brazilian Geophysical Society, São Paulo, Vol 2, p422-425.

Stevanato, R., Ferreira, F.J.F., Pegoraro, M. & Tavares, F.S. 2003. Imageamento elétrico 2-D e polarização induzida na detecção de pluma de contaminação no aterro sanitário de Itajaí-SC. In: 8th International Congress of the brazilian Geophysical Society, Rio de Janeiro, CDRom, 6p.